
API Strategy & the Asure Marketplace

Presenter: Christian Franklin

2024 Asure Reseller Partner Conference



Speaker Introduction 

Andrew Quartey & 
Ashrit Bista

Architects

Integrations, Marketplace, 
AsureID, Engineering

Christian Franklin

Product Manager/Owner

Integrations & Marketplace



Introduction

Session Agenda

Modernization Insight: 
Guiding Principle

Timelines & Roadmap 
Prerequisites

Current state of 
APIs @Asure

API Vision

01

03

05

02

04

06 Q & A



What is an API?



Introduction to APIs

▪ Application Programming Interfaces (APIs) are beneficial 
ways of transferring information between systems

▪ Different types of APIs: REST, SOAP, GraphQL, Websockets

▪ APIs have evolved from basic programming constructs 
to critical components of modern digital ecosystems

▪ They allow for interoperability, flexibility and allow for new 
business models

▪ In the 1970s APIs were used as software interfaces that allowed 
various applications to communicate with the operating system



History of APIs

▪ The term API initially described an interface only for end-
user-facing programs, known as application programs. 
This origin is still reflected in the name "application 
programming interface." Today, the term is broader, 
including also utility software and even hardware 
interfaces.[7]

▪ A diagram from 1978 proposing the expansion of the 
idea of the API to become a general programming 
interface, beyond application programs alone[6]

▪ https://en.wikipedia.org/wiki/API

https://en.wikipedia.org/wiki/Application_program
https://en.wikipedia.org/wiki/Utility_software
https://en.wikipedia.org/wiki/Hardware_interface_design
https://en.wikipedia.org/wiki/Hardware_interface_design
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Application_program
https://en.wikipedia.org/wiki/API


History Continued

▪ The idea of the API is much older than the term itself. 
British computer scientists Maurice Wilkes and David 
Wheeler worked on a modular software library in the 
1940s for EDSAC, an early computer. 

▪ The subroutines in this library were stored on punched 
paper tape organized in a filing cabinet. This cabinet also 
contained what Wilkes and Wheeler called a "library 
catalog" of notes about each subroutine and how to 
incorporate it into a program. 

▪ Today, such a catalog would be called an API (or an API 
specification or API documentation) because it instructs a 
programmer on how to use (or "call") each subroutine that 
the programmer needs.[7]

https://en.wikipedia.org/wiki/Maurice_Wilkes
https://en.wikipedia.org/wiki/David_Wheeler_(computer_scientist)
https://en.wikipedia.org/wiki/David_Wheeler_(computer_scientist)
https://en.wikipedia.org/wiki/Software_library
https://en.wikipedia.org/wiki/EDSAC
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Punched_paper_tape
https://en.wikipedia.org/wiki/Punched_paper_tape
https://en.wikipedia.org/wiki/Filing_cabinet
https://en.wikipedia.org/wiki/API


History Continued

▪ Although the people who coined the term API 
were implementing software on a Univac 1108, the 
goal of their API was to make hardware 
independent programs possible.[8]

▪ https://en.wikipedia.org/wiki/API

https://en.wikipedia.org/wiki/UNIVAC_1100/2200_series
https://en.wikipedia.org/wiki/Hardware_independent
https://en.wikipedia.org/wiki/Hardware_independent
https://en.wikipedia.org/wiki/API


Modern APIs

▪ In building applications, an API simplifies programming by 
abstracting the underlying implementation and only exposing 
objects or actions the developer needs.

▪ A REST API conforms to the constraints of REST architectural 
style and allows for interaction with RESTful web services. REST 
stands for representational state transfer and was created by 
computer scientist Roy Fielding.

▪ GraphQL is an open-source data query and manipulation 
language (created by Facebook) for APIs and a query runtime 
engine. 

▪ GraphQL enables declarative data fetching where a client can 
specify exactly what data it needs from an API. Instead of 
multiple endpoints that return separate data, a GraphQL server 
exposes a single endpoint and responds with precisely the data 
a client asked for.



API Example – REST & CRUD

▪ REST – Representational State Transfer
✓ Stateless – each request happens in isolation (no 

memory from previous or future requests)

✓ All information needed to process a request is 
within the request itself

▪ CRUD Operations and HTTP Methods:
✓ Create resources using the POST method

✓ Read resources using the GET method

✓ Update resources using the PUT method

✓ Delete resources using the DELETE method



API Design and Development

▪ Design Principles: Simplicity, consistency 
and adherence to Asure software 
standards

▪ Documentation and Developer 
Experience: OpenAPI style specifications 
that illustrate endpoints

▪ Security: New APIs built and secured with 
AsureID

▪ Versioning: Versions of API to maintain 
backward compatibility 



Business Value of APIs

Revenue 
Generation

▪ Connecting different 
systems together

▪ Service for clients

Ecosystem 
Development

▪ Build partnerships with 
vendors and clients

▪ Work together to create 
value-added services

Speed of 
Development

▪ Once built, can be 
repurposed for multiple uses

▪ Depending on system – fast 
development 

Security

▪ Can utilize modern security 
practices such as using 
Oauth 

▪ AsureID

Ease of 
Management

▪ Set it and forget it

▪ Allows others to connect 
and build vs building from 
scratch each time



File Integration Simple method to transmit data from 
point A to point B

CSV or Text files that contain 
relevant data to be transmitted

Generally sent through SFTP or 
uploaded through a web portal

Files must be created and 
maintained



Current State: Fractured API Landscape

▪ No reliable singular public API for direct clients, resellers 
and partners

▪ Several different APIs by application domains used 
simultaneously for direct integrations with select partners 
and clients (direct and resellers)

▪ No uniform authorization model – Basic Auth, custom 
JWT,  custom API keys

▪ Implementation in older tech stack: Delphi, .Net 
Framework MVC

▪ Hosting and deployment – Windows servers hosting IIS 
and not truly scalable

▪ Non-multitenant

▪ Hard to add new functionality and deliver timely



Modernization @Asure: Guiding Principle

Software built at Asure should be cloud-
native,observable, extensible, geographic
ally resilient, support compliance 
requirements and operational workflows. 
All of this must be served in a scalable 
and cost-effective manner. This is every 
team's ownership.



API Vision

Developer Portal

▪ API collections

▪ Authorization for APIs

▪ Self-service generation of API 
credentials

▪ Sandbox environment generation

01
Developer APIs

▪ Data APIs

▪ Event APIs (subscriptions)

▪ RESTful domain-based covering core 
HCM domains – benefits, payroll, 
time, employee, etc.

02
Developer SDKs

▪ Downloadable SDKs inbuilt support 
for exponential back-off, retries

▪ Support for ease of event 
subscription

03

Partner APIs

▪ Customized unpublished APIs for 
specific partners to support Asure 
Marketplace and strategic partners

04
Security Model

▪ OAuth2 JWT token-based 
authorization (initial)

▪ Financial Grade API support: mTLS, 
DPoP

▪ Tenant Isolation

05



Intuit Developer Portal



Stripe Developer Portal



Status: Current Iteration

Continuous Improvement Continuous Development

• First iteration of domain-based APIs built to 
support Employee Portal to provide 
necessary data from current source 
systems of record

• Unified Asure GraphQL-based API to power 
new web and mobile platforms with 
federation to the domain-based APIs

• Integration of APIs with AsureID for JWT-
based token authorization

• Not ready for 3rd party consumption



Roadmap & Timeline 
Prerequisites: API v1.0

▪ Backend Integration Phase Completion

▪ Support for Service Bureau users and 
administrative users

▪ Integration of payroll systems into AsureID (Small 
& Mid-market)

▪ Integration of Time & Labor into AsureID



API First Development

Create APIs

▪ Ensure correct data 
attributes are being used

▪ Generic enough to allow 
for cross platform 
development

▪ Reusable and extensible

▪ Designing with 3rd parties 
in mind

Connect APIs to New 
& Old Applications

▪ Employee Portal

▪ Employer Portal

▪ Microservices

Expand APIs

▪ Expand on existing APIs 
rather than building new 
for each project

▪ Improving with 3rd parties 
in mind



API Based Integrations

Vendor Dependent

▪ Not all vendors support 
APIs

▪ Some required data 
elements not always 
available

Impact

▪ Is it solving a problem 
worth solving?

▪ Will it be widely used?

Solution

▪ Ease of use

▪ Hands-off

▪ Seamless



Asure Marketplace 

• Access driven – can be turned on/off at 
different levels

• Vendors only have access to clients and 
employees that have the integration turned 
“on”

• Secure – no access given without permission 
(consent management)

• Modern design



Marketplace: ZayZoon

▪ API based integration

▪ Utilizes Asure Datastore / Data Lake

▪ Evolution Scheduled Task

▪ Mangrove APIs

▪ Wages automatically reported to ZayZoon

▪ Deductions automatically imported to 
Employees

▪ Deductions automatically reported to 
ZayZoon



Marketplace: Equifax



Marketplace: Equifax

▪ API based integration

▪ Utilizes Asure Datastore / Data Lake

▪ Can be turned on/off per company

▪ Employees can review information through 
Equifax’s Employment Data Report, request a 
data freeze, and more



Marketplace: E-Comp

▪ Evolution API based integration

▪ After turning “on” the API – simple to 
add/remove clients

▪ Provides real time payroll data to E-Comp via 
API

▪ Removes the need to send file uploads or 
reports



Marketplace: Vestwell

▪ File based integration

▪ File transfer is automated

▪ Integration manages and sends payroll files 
to Vestwell

▪ Files received from Vestwell are processed 
by integration and can be automatically 
imported using EvoExchange

▪Available on both Evolution and Mangrove



Q & A



Thank You!

2024 Asure Reseller Partner Conference


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

